>Power-One (ABB) Aurora Solar & Wind Inverters
Power-One (ABB) Aurora Solar & Wind Inverters 2017-10-19T16:19:44+00:00

Power-One (ABB) Aurora Solar & Wind Inverters

By: Rob Beckers

Solacity was a Power-One (now part of ABB) distributor for many years. During that time we collected a number of documents and gained expertise with their inverters, the wind inverters in particular, that could be useful for others. It is presented here.

These inverters were designed by a few visionary engineers from a small Italian company named Magnetek. Their inverters had an extremely wide input Voltage range and two independent inputs, features that were unheard of at that time. Soon after the inverters became commercially available Magnetek was bought up by the US company named Power-One, and a number years later Power-One was in turn bought by ABB.

The Power-One inverters were unique for their time, though nowadays many manufactures have similarly wide input Voltage ranges, and dual-MPPT inputs have become ubiquitous. If you are looking for solar or wind inverters please contact us, we can help you find the proper inverter for your project.

To learn more about stacking multiple wind inverters, something that is needed to grid-tie a larger wind turbine, to increase total output power, please follow the link on the left.

If you have any questions about Power-One or ABB inverters please do not hesitate to ask us. We know them inside-out, and if we can help we will be happy to do so!

Documents Related to Power-One Aurora Solar Inverters

Power-One Aurora Wind Inverters

With SMA no longer producing their Windy-Boy inverters there are not a whole lot of sources of UL/CSA listed wind grid-tie inverters left: ABB makes the (formerly Power-One) Aurora wind inverters, and there is Ginlong with their wind inverters. If you are looking for Ginlong – Solis inverters let us know, we are a distributor for them.

This section is about the Power-One Aurora wind inverters. They are very nice inverters indeed: The DC input range is a full 50 – 580 Volt, and they have room for a 16-point MPPT table. These inverters come ’empty’ from the factory. Each brand/type of wind turbine has its own MPPT table, and that needs to be loaded into the inverter before it does anything useful. If you need an MPPT table for your wind turbine please contact us. We have developed (and programmed into inverters) many dozens of MPPT tables and are happy to help if we can.

Important Notes Concerning the use of Power-One Aurora Wind Inverters

Please realize that the Aurora wind inverters, while they work very, very well, are not exactly plug-and-play boxes. They need an MPPT table to work properly, and unless you buy the inverter from the wind turbine manufacturer it will arrive empty (if you need help loading an MPPT table just let us know, we’re happy to explain how to do this). It is your responsibility to make sure the inverter has a proper MPPT table loaded into it, suitable for your wind turbine. It will not work without it!

Also keep in mind that the Aurora wind inverters expect DC on their input. Most wind turbines supply 3-phase AC, and this will not work directly (despite the obvious, we know people that tried it)! If your turbine produces AC you can use the PVI-WIND-BOX from Power-One (which we can supply) to convert it to DC, or you can use your own solution. One cheap and nearly bullet-proof solution is this rectifier from Digikey. The inverter does not care much, as long as there is reasonably smooth DC going in.

If you use your own rectifier or controller (as opposed to the PVI-WIND-BOX), make sure there is an overcurrent protection device in the form of a DC rated fuse or breaker in the DC path of the inverter. While this is common sense, surprisingly few third-party controllers contain overcurrent protection. If the rectifier fails it will send AC into the inverter. The inverter has some protection for AC on its input, by using a diode that will short-circuit the input if the polarity is wrong. That diode will only handle a limited current though before it blows, and when it does, that is the end of the inverter. Size the overcurrent protection such that regular use will not exceed 75% of the fuse or breaker rated value.

The Aurora inverters, wind and solar, are transformerless. While that makes them very efficient (no transformer losses), it requires that their DC inputs ‘float’ with respect to ground. That means neither the alternator of the wind turbine, nor the rectifier, can reference ground (their housings should still be grounded, but the wiring cannot be grounded). Especially if you are supplying your own rectifier solution this can be an issue, and you have to make sure it complies. The inverter will tell you if there is a connection to ground, by showing a “ground fault” on the display.

The Aurora inverters are pretty hardy boxes; it is really, really hard to kill them (we have tried). They also have extensive on-board diagnostics that will tell you when something is wrong. However, the one sure-fire way to kill an Aurora is by exceeding the 600V input limit. Doing so will with certainty let the magic smoke out, and the inverter will not work again. What is more, this will log an event in the permanent memory of the unit, and repairs will not be covered by warranty. It is your responsibility to make sure your wind turbine will never, ever, deliver more than 600V DC to the inverter (in fact, it is a good idea to stay below 500V just to have a margin of safety). If you are uncertain your turbine will stay under 600V, even if there is no load, we have a suggested circuit using a measurement relay that can protect your inverter.

Let what was written above sink in for a moment: It means that your wind turbine should stay under 600V DC (or disconnect from the inverter) even when the grid goes away and there is no load on the turbine. This has to be absolutely fool-proof!

There is one more little thing concerning Power-One Aurora wind inverters you should be aware of: Without a source the DC input ‘floats’ at about 55 – 60 Volt, and if the inverter is set to switch on at that low a Voltage it will never switch off. The stray Voltage will keep it “on”, wasting energy (the inverter consumes about 40 Watt when idle). There are two ways to resolve this: A 100 kOhm/5W resistor between DC positive and negative on the inverter input will lower this stray Voltage so the inverter will switch off even when the starting Voltage is set to 50 Volt. The other alternative is to raise the inverter startup Voltage and first point on your MPPT table to 70 Volt or higher.

MPPT For Wind Turbines & Inverters

Maximum Power Point Tracking (MPPT) has been used for photovoltaic (solar) power for a long time. It is more recent for wind turbines. What MPPT does is to always load the wind turbine just right, so it delivers the most energy at any wind speed.

When the wind blows through the turbine it will produce a certain amount of torque on the blades. For each wind speed there is a specific rotor RPM where this torque, and power output, will be at its maximum; speed up the blades at that wind speed (higher RPM) and drag will increase so less torque is available, slow down the blades (lower RPM) and blade lift will decrease, resulting in less torque. It helps to think of this point of maximum torque as the best lift-to-drag ratio for the blades, even if this is not completely correct it is close enough. In real life the wind speed is not constant, but changes continuously, and with it the best rotor RPM for maximum torque will change as well. What is important to remember is that there is an optimum RPM for each wind speed, and that is where we want to run the wind turbine to achieve MPPT.

Another way to think about the best power point for a wind turbine rotor is with the use of the Tip Speed Ratio (TSR) concept. The TSR is the number you get when dividing the speed at which the rotor blade tips travel, by the speed of the wind. For most wind turbines the TSR is in the range of 5 … 10, and it is frequently used with wind turbines because it carries lots of information in a single number: A high TSR means a noisy wind turbine, with tips traveling at great speeds, resulting in high wear as well. Usually the efficiency of high TSR machines is not great, because the blades are working in the higher-drag end of their range. Its usefulness for MPPT comes from the way airfoils work: The point where the airfoil works best, the best lift-to-drag ratio if you will, is at a certain angle of the blade to the wind, the angle-of-attack (AOA) of the airfoil. This AOA actually stays almost constant over a wide range of wind speeds (this is not entirely true; the Reynolds number is a factor in this equation and it changes as the wind speed changes, but for our purposes we can assume the best AOA is the same at all wind speeds). To keep the AOA constant as the wind speed changes, means that the tip speed of the blade has to change proportionally with the wind speed. Double the wind speed, double the RPM, double the tip speed, and the resulting AOA stays the same. Remember that the TSR is tip speed divided by wind speed, and if those two numbers change in proportion to each other that means the TSR needs to be constant over a range of wind speeds for the best power point!

The way MPPT is done by the wind inverter is by loading up the rotor in such a way that at each wind speed the rotor torque is at its optimum. Since power is torque times RPM, what the inverter really needs to know to track the maximum power point is how much power to extract from the rotor for each rotor RPM. The inverter does not have direct access to the rotor RPM, so it uses a different parameter that is proportional to it. Rotor RPM corresponds directly with the frequency of the voltage coming off the AC alternator of the turbine, and the Aurora inverters can use this. It also corresponds closely, not quite directly but the difference is small, to the alternator’s voltage. That is why most wind inverters and MPPT tables use the voltage of the alternator after rectifying it to DC. Programmed into the inverter is a table that has a number of points linking voltage versus inverter output power (sometimes frequency vs. output power, though Voltage is the easier one to work with). The inverter will use these points (up to 16 points the Aurora inverters) to create a curve by interpolating between points as needed. That is the MPPT table, and MPPT curve, which is different for each brand and type of wind turbine.

When the wind is blowing the turbine’s rotor will spin, and the inverter will load the rotor according to the MPPT table it has. That load on the alternator results in a torque on the blades, and if that torque matches the torque the wind exerts on the blades the rotor will not speed up or slow down.  The other side of this is that if the inverter load is not enough to match the blade torque, the blades will speed up and rotor RPM will increase, the voltage will increase, and the inverter will increase the load according to the MPPT table until the blades stop speeding up (and vice-versa). The net-result is that at each wind speed the rotor will continuously reach equilibrium, where the alternator torque (created by the inverter load) matches rotor torque, and the turbine will automagically gravitate to this RPM. If the wind picks up the rotor torque will exceed the inverter torque, and the RPM will increase. The inverter sees this and increases the load accordingly, until a new equilibrium RPM is reached. If the MPPT table was made in such a way that this equilibrium RPM is the point of maximum torque for a wide range of wind speeds we will truly be tracking the maximum power point and get the most energy out of the wind turbine. Another way of saying the same is that the MPPT table should be such that the TSR of the wind turbine is kept at its optimum regardless of wind speed. That is what MPPT does: Load the turbine such that it is always running at its most efficient, extracting the maximum amount of power from it, at any wind speed.

Deriving a working MPPT curve for a new wind turbine is not rocket science (luckily!). In fact, just by using the rotor diameter, voltage characteristics of the alternator, and an educated guess of its efficiency, it would be possible to get a curve that works, at least well enough to get started. To make something a bit more precise it is good to measure at least one point high up on the power curve, and one at the lower end. While power in the wind follows a cube relationship with wind speed (and RPM of the alternator, since RPM has to vary linearly with wind speed to keep the TSR constant), most wind turbines are not efficient enough to follow a cube relationship for output power vs. voltage or frequency. In practice, most turbines end up with an MPPT curve that is between a square and a cube relationship (the more efficient ones are closer to a cube). MS-Excel can greatly help, due to its graphing ability and build-in functions that can map a smooth curve through a few points. Luckily, the efficiency of most wind turbine airfoils does not change all that much even if the TSR is off from its best value by quite a bit. That means the MPPT table can be off considerably, without noticing much difference in energy production.

To work properly the wind inverter needs an MPPT table that is specific for the wind turbine that you hook up to the inverter. The MPPT table is simply a list of numbers, it can be as little as two points (though we suggest a minimum of 3 points) to a full 16 points. Power-One makes the AuroraInstaller program available to load the MPPT table into the inverter. AuroraInstaller can also read the table that is in the inverter, or modify it. The process is very easy and the AuroraInstaller manual describes it in detail. Of course, we are here to help you with this if needed.

Over-Voltage Protection for Wind Inverters

It is very important to keep the input DC Voltage going into the wind inverter below 600 Volt at all times. Even during that storm, when the power is out (because a tree fell through the power lines), and your inverter is switched off! Going above 600 Volt, even briefly, is a guaranteed way to let the magic smoke out, and without the magic smoke that inverter is never going to work again. Moreover, inverter manufacturers got wise and make sure the inverter logs the event into permanent memory before giving up the ghost, so you cannot make any warranty claims.

To protect the inverter we have developed a simple circuit that uses a Voltage sensing relay and a contactor to disconnect the inverter when the Voltage goes above a set limit. It uses commonly available parts and is easy to build. It is also fool-proof: If the grid goes out the contactor does not get power and the inverter is disconnected. Shown in the diagram are two versions; one that simply disconnects the inverter at a set Voltage limit, the other that connects the turbine to a dump load when it gets disconnected from the inverter.

Keep in mind that protecting the inverter is part of the solution (and an important part!). You also have to protect the wind turbine itself, make sure it cannot run away uncontrolled and self-destruct. How that is best done varies from turbine to turbine. For some a dump load is the best solution, for others it may be better to stop the turbine altogether, and there are also turbines that have so much aerodynamic drag when they speed up that no extra protection is needed.

It is up to you to make absolutely sure that the turbine stays under control at all times, and all wind speeds, and that the inverter will never see more Voltage than it can handle.

Stacking Multiple Wind Inverters

The Power-One Aurora wind inverters come in sizes up to 6 kW. Ginlong makes wind inverters up to 5 kW in size. So what is one to do for larger wind turbines, when more output power is needed? The answer is to stack multiple inverters, as many as needed to satisfy the power rating of the turbine.

However, both the Ginlong and Power-One inverters are ‘transformerless’ designs. In essence this means the 240 Volt AC of the grid is also present on their DC inputs; the DC input of the inverter does not float with respect to ground, or with respect to the DC input of another inverter. To make multiple inverters work together when they are driven from the same wind turbine requires a few more steps than just connecting their inputs together.

We have written an article that shows how to stack multiple Power-One inverters. The same applies to Ginlong or other transformerless inverters as well.

Power-One Aurora Wind Inverter Documents

Recent Tweets @SolacityInc